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A dislocation network model of recovery- 
controlled creep 
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A new model of recovery-controlled creep deformation, based on the jerky glide motion of 
dislocations between obstacles, is proposed. A three-dimensional distribution of dislocation 
links is visualized such that only links which attain a certain threshold size, 2a, through recovery 
can glide rapidly until they are again arrested at the next obstacle. The rate of mobilization of 
arrested dislocations is shown to be directly proportional to the annihilation rate, ~6 a . The strain 
rate, ~, during transient creep is related to the annihilation rate, the obstacle spacing L and the 
Burgers vector b of the dislocations according to the expression 

where ~1 is a geometrical constant and O(t) is a time-dependent parameter whose value is 
determined by the instantaneous (free) dislocation density as well as some salient features of 
the dislocation distribution. At steady state, ~ (t) translates into a constant which is stress and 
temperature independent. The average effective dislocation velocity is also shown to be directly 
proportional to the annihilation rate. The model is used to rationalize the familiar creep tran- 
sients which are usually observed when the stress is altered abruptly during recovery creep. 

1. In t roduct ion  
Dislocation creep is often classified as either glide- 
controlled or recovery-controlled, depending on 
which of the two simultaneous processes of glide and 
recovery is believed to be the slower. Most theories of 
creep are usually regarded as being successful once 
they predict the "correct" stress exponent for the 
steady-state creep rate. The characterization of tran- 
sient creep has been generally less successful appar- 
ently because this creep stage does not easily lend itself 
to certain simplifying assumptions which are readily 
applicable to steady state. 

In materials undergoing recovery creep, the normal 
primary creep stage is often accompanied by the 
development of subgrains whose boundaries become 
well defined as steady state is approached. The density 
of dislocations inside the subgrains (hereinafter 
referred to as "free" dislocations) decreases, usually 
by a factor of two or more during transient creep [1]. 
Attempts have been made to explain the decreasing 
creep rate by invoking the concept of subgrain 
strengthening [2]. However, the results of recent 
experimental investigations have demonstrated quite 
clearly that subgrain boundaries may not be potent 
sources of strengthening, at least at elevated tem- 
peratures [3, 4]. 

No less paradoxical is the material weakening 
associated with the inverse transient creep of several 
alloys in spite of increasing dislocation density [5, 6]. 
Creep in such alloys is believed to be glide-controlled. 
The problem then is essentially that of explaining the 
material strengthening accompanied by decreasing 
dislocation density on the one hand, and the weaken- 

ing associated with increasing dislocation density on 
the other. Both of these observations are clearly in 
conflict with classical work-hardening models which 
predict increased strength as the dislocation density 
increases. 

It is this author's firm conviction that these 
apparent paradoxes arise largely because not all the 
parameters which influence creep strength have been 
considered in explaining the observed transient effects. 
Ajaja and Ardell [3], after noting that the process of 
subgrain development in a stainless steel could be 
accompanied by material strengthening or weakening 
depending on the creep conditions, concluded that 
their observation of the microstructure may not tell 
the entire story. There appears to be an important, 
though concealed, parameter which is not being 
properly counted. 

In recovery-controlled creep this parameter would 
appear to be the rate of recovery of the deforming 
sample. The Bailey-Orowan model [7] is widely 
acclaimed for its unique characterization of the 
relationship between the creep rate and the rate of 
recovery. Past experimentation also appears to have 
confirmed the existence of a direct parallelism between 
these two quantities [8, 9]. This observation however, 
is yet to be harmonized with the basic Taylor- 
Orowan equation which relates the strain rate to the 
dislocation density and the dislocation glide velocity. 
It would be interesting to know, for example, the 
relationship between the dislocation velocity and the 
recovery rate. 

In this paper, the processes of dislocation obstruc- 
tion by obstacles and their subsequent release through 
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recovery (recovery-creep) are examined. Expressions 
are derived for the strain rate during transient and 
steady-state creep in terms of the annihilation rate and 
other pertinent features of the dislocation structure. 
The significance of the dislocation velocity in the 
Taylor-Orowan equation is closely examined and 
other familiar phenomena commonly associated with 
creep deformation are rationalized. 

2. The model 
2.1. Dislocation obstruction process during 

recovery-creep 
At sufficiently high stresses, an instantaneous plastic 
strain is usually generated upon loading a creep 
sample. It is a general characteristic of dislocation 
creep, especially in pure metals, that no further (creep) 
strain can be generated without the aid of recovery 
(recovery-controlled creep) and/or thermal activation 
(thermally-activated creep). This implies that few dis- 
locations are long enough to continue gliding under 
the applied stress, i.e. most dislocations must be held 
up at obstacles. 

In a single-phase crystalline solid, the main obstacles 
to dislocation glide are typically forest dislocations. 
The interactions between the glissile and the forest 
dislocations often result in the formation of a three- 
dimensional network of dislocation links of various 
sizes joined at nodes. A dislocation link can be 
released only if the applied stress is large enough to 
"unpin" a nodal junction, or to bow out the link 
between two nodes via the Orowan mechanism. In the 
case of dislocation-dislocation interactions, the 
former scenario seems more probable as dislocation 
nodes could hardly be regarded as obstacles of infinite 
strength. 

The shear stress z required to release a link of length 
2 is given by the well known relation 

z = a o G b / 2  (1) 

where G is the shear modulus of the deforming crystal, 
~0 is related to the strength of the obstacle and b is 
Burgers vector. In general, ~0 ~< 1, the upper limit 
(~0 = 1) corresponding to the case of  strong obstacles 
which can only be bypassed by Orowan bowing. It is 
clear that for any given stress, not all links will possess 
the requisite length for the bypassing of  obstacles. 

At high temperature, the dislocation structure 
coarsens by recovery, so that on average dislocation 
links become longer (though fewer in number), thus 
allowing some arrested links to be freed from their 
obstacles, and sustain the deformation process. The 
dislocation release process can also be aided by ther- 
mal activation. This model will, however, focus on the 
situation in which the mobilization of links is secured 
mainly through recovery, i.e. when the thermally 
activated release process is relatively insignificant. 
Examples of such athermal obstacles have been dis- 
cussed by Ostrom and Lagneborg [10], and we assume 
it is generally valid for recovery-controlled creep. 

Once a link is released, we suppose it can glide 
rapidly until it encounters the next obstacle. The 
obstacle partitions the link into two segments each of 
which may be too short to continue gliding under the 

applied stress (Equation 1). Each of the new segments 
must thus spend some finite time (during which its 
length increases by recovery) waiting to bypass the 
obstacle. After surmounting the obstacle, the link 
glides freely again until it encounters the next obstacle 
and the process repeats itself. The kinetics of this kind 
of dislocation obstruction process have been treated in 
some detail by Gillis e t  al. [11], Lloyd e t  al. [12], Frost 
and Ashby [13] and Kocks et  al.  [14]. 

2.2. Dislocation distribution and mobilization 
A schematic illustration of a typical distribution func- 
tion is provided in Fig. 1 where the frequency function 
q~(2, t) is defined such that ~b(2, t)d2 is the number of 
dislocation links per unit volume having lengths 
between 2 and 2 + d).. For materials in which sub- 
grains develop during deformation, the distribution 
function incorporates only the free dislocations; dis- 
locations in subgrain walls are not included. To mobil- 
ize a link under an applied stress Za, it must attain 
length ha given by Equation 1: 

h a : ~ o G b / Z a  . (2) 

It is to be expected that in any three-dimensional 
network of dislocation links, only some of the links 
will lie on crystallographic planes which are favourable 
for glide; these are the potentially mobile links. Other 
links which are unfavourably oriented will be immobile. 
Upon loading a creep sample to a stress level Za, all 
potentially mobile links with lengths greater than h a 

should glide rapidly until they again become immobi- 
lized by interacting with the rest of the network. Thus 
any links in the distribution with 2 > h a after loading 
must be immobile (Fig. 1). The region 0 < 2 < 2 a 
consists of both immobile and potentially mobile 
links. 

The area under the frequency curve represents the 
total number of links, N, per unit volume, i.e. 

= fo ~(2' t)d2 (3) N 

while the dislocation density is given by 

= fo  q~(2, t )2d2 = ( 2 ) N  (4) Q 

where ( 2 )  is the average link length (see Fig. 1). Both 
N and Q are, of course, time dependent. 

t Immobile + d 
potentially mobile ~ I .~ Immobile 

o (~.) Xa 

Figure I Schematic representation of the distribution function 
q~(2, t) illustrating the average link length ( 2 )  and the threshold 
link size 2a. 

3352 



2.3. Strain rate 
In recovery-controlled creep, further deformation is 
possible after loading only if some potentially mobile 
links grow by recovery such that they attain lengths 
greater than 2 a. Suppose that creep occurs by alternate 
coarsening (recovery) and glide. If we picture a situ- 
ation in which the distribution is held stationary while 
recovery occurs for time fit, some links are pumped 
into the region 2 > 2 a. Without allowing further 
recovery, the newly generated mobile links are now 
allowed to glide (rapidly) and generate strain 3y which 
is given by 

6~ = oqb6A/V (5) 

where 6A is the area swept out by gliding dislocations 
in a crystal of volume V, b is the Burgers vector of the 
dislocations and a~ is a geometrical constant. 

For the spurt-like motion of dislocations, we can 
write Equation 5 as 

5 7 = oq bAbNm (6) 

where 6Nm is the number of mobilized links per unit 
volume, each of which has swept out area A. We can 
further re-write Equation 6 as 

or  

O 7 = oqbLOem , (7) 

where 6qr, (=--2afNm) is the density of mobilized dis- 
locations. The parameter L (= A/2a) is closely related 
to the inter-obstacle spacing or the average distance 
through which a mobilized link glides before the next 
arrest. It should be recalled that 2a is the link length 
upon mobilization. In the limit 6t -~ O, Equation 7 
gives the strain rate ~ = dy/dt, or 

= ~l bLOm (8) 

where Om = dQm/dr" Equation 8 has been used by past 
authors to characterize the strain rate during spurt- 
like dislocation motion [15, 16]. 

Within the time 3t (during the recovery step) the 
longest links (2 = ha) would have increased their 
length by 621~=~. The number of dislocation links 
thus mobilized is given by the shaded area in Fig. 2, 
and the density by 

where fp is the fraction of links which are potentially 
mobile and q~a is the value of the frequency function 
corresponding to the link length 2a, i.e. q~, = q~(2~, t). 
A second order term involving 62 [~=~ and 6q~a, arising 
out of the variability of q~ with t, is assumed to be 
negligibly small. Equation 9 becomes, in the limit 
6 t + O  

~m = fpqga2a(d)'/dt)2=&- (10) 

The value Of 2a is given by Equation 2 while (d2/dt)~=~.~ 
is the growth rate of links having length 2a. 

By analogy to grain growth theory, the growth rate 
of a link of length 2 during recovery is given by [17] 

r 

Ca 
* (t) x l I 

~ - |  (t+ ~t) 

X \  

r 

Figure 2 Schematic illustration of the number of links mobilized 
(shaded area) in time 6t when links of threshold size would have 
grown by 621~_~a. 

dt 

where k is a constant which incorporates the mobility 
and the line tension of the dislocations and 2c is the 
critical link length. It is clear from Equation 11 that 
links longer than 2r grow while shorter links shrink 
during recovery. The growth rate of links of length 2a 
is thus 

This quantity can be related to the overall coarsening 
rate of the dislocation structure, as is demonstrated 
below. 

Ardell and Przystupa [18] recently obtained a 
relationship between the rate of growth of the average 
link, d(2) /dt ,  and the average growth rate of all the 
links, (d2/dt),  of the form 

/ d ) . \  d ( 2 )  ( 2 )  dN 
\ / ~ -  -- dt  + - -N- -d - -~"  

(13) 

The volume conservation condition can be stated as 
[19] 

N ( 2 )  3 = constant (14) 

which yields, upon differentiating, 

dN 
d--t- ~: -- ( 2 ) - 4 d ( 2 ) / d t  (15) 

whereupon Equation 13 becomes 

/ d 2 )  6 ( 2 )  (16) 
~-  = --2 dt 

From Equation 11, 

/ d 2 /  k ( ( 2 )  ( 2 ) ( 2  ' ) )  (17) 
= ( 2 - - 5 \ 2 ~  - 

which, combined with Equation 16 gives 

d ( 2 )  k ( (2 )~  
dr - 2 ( 4 )  ( 2 ) ( 2 - i )  (18) 

Setting (2 -I ) = at ( 2 )  -I and 2c = a2(2), Equation 
18 becomes 
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d(2> _ k (a ,  a 2 - -  1~ 
(19) 

dt (2> \ 2a2 J 
Combining Equation 19 with Equation 12 we obtain 

where 

(_~_);~ d ( 2 )  (20) d2 
= g,0(t) dt = ";~a 

1 - az(2)/~.a" ] (21) 
qJ o ( t ) = 2 a~ a2 ~ -I jl " 

It should be noted that the parameters a~ and a 2 are 
not necessarily constant. Indeed their time-dependences 
will be determined by the manner of evolution of the 
distribution function ~b(2, t). The growth rate of links 
of length 2a is related to the overall coarsening rate of 
the network through Equation 20. The time depen- 
dence of ~b0(t) derives from those of al, a2 and (2) .  

The density of dislocations mobilized per unit time 
is given by Equations 10 and 20: 

d(2> 
Om = fpq~a~al]/0(/) dt (22) 

By assuming that the network geometry remains 
reasonably constant during deformation, the average 
mesh size can be taken to be directly proportional to 
the average link length. The proportionality constant 
is expected to be close to 1, so that the average link 
length can be related to the dislocation density accord- 
ing to the expression 

(2 )  = q ,/2. (23) 

Differentiating Equation 23 with respect to t and 
recognizing that ~ = - ~ a  (the annihilation rate) 
during recovery in the absence of glide, we have 

d ( 2 )  - �89 (24) 
dt 

Substituting for )~, (Equation 2) and d ( 2 ) / d t  
(Equation 24) in Equation 22 gives a relationship 
between the mobilization and annihilation rates: 

where 

Qm = I]/(t)~a (25) 

aoGbf  v ~(t) = 2L k0 3/2~ba~0(t)" (26) 

The strain rate is found by substituting Equation 25 
into Equation 8: 

= a,~b(t) ~abL. (27) 

Equation 27 is valid for both transient and steady- 
state creep. An explicit strain-time relationship can- 
not be obtained from this equation at the moment 
because the time dependences of g,(t) and Oa are not 
known. 

We can re-write Equation 24 as 
d(2> 

~ = 2Q3/2 dt ' 

which combined with Equations 19 and 23 yields 

~, = k~2(a, a 2 -  l) (28) 

a2 

It is clear from Equation 28 that the usual assumption 
that Oa is directly proportional to ~2 is valid only if al 
and a2 are constant. Obviously, this will depend on the 
exact form of the distribution function and how it 
evolves during creep. The evolution of the distribution 
function will also determine, to a large extent, the 
time-dependence of O(t). These parameters are being 
studied in detail and the results of our findings will be 
reported in future publications. 

Notwithstanding the difficulties mentioned above, 
the attractive feature of Equation 27 lies in its predic- 
tion of a direct correlation between the strain rate and 
a recovery parameter (i.e. the annihilation rate) during 
recovery-controlled creep. Moreover, a cursory inspec- 
tion of Equations 21 and 26 reveals that the time 
dependence of O(t) will, in general, be quite mild. If, 
for example, both al and a2 are assumed not to vary 
significantly with t, the time dependence of O0(t) will 
derive mainly from that of (2 )  : g,0(t) will decrease as 

decreases (i.e. as ()~) increases) during normal 
primary creep. The value of q~a will be expected to 
increase with increasing dislocation density (since the 
number of links having length 2, should increase 
proportionally), though the exact relationship is not 
known. Thus in Equation 26, the quantities O0(t) and 
~b, would decrease while r 3/2 increases as ~ decreases. 
These counter-balancing effects are likely to result in 
a relatively mild variation of O(t) during creep. 

The purpose of going through the sketchy analysis 
in the foregoing paragraph is to demonstrate that the 
variation of ~ during transient creep will be largely 
determined by the time dependence of the annihil- 
ation rate (Equation 27). Of course, the parameter 
L ( ~  r ~/2) will increase slightly whilefp (Equation 26) 
can be reasonably assumed to stay constant during 
creep. The results of past experimental investigations 
have revealed that the rate of recovery decreases sig- 
nificantly during normal primary creep, in some cases 
by several orders of magnitude [8, 9]. If  we assume 
a one-to-one correspondence between the rate of 
recovery and the annihilation rate, it becomes quite 
clear why the parallelism between the creep rate and 
the recovery rate is present in recovery-creep. 

2 .3 .  1. S t e a d y - s t a t e  c r e e p  
New dislocations are generated each time a released 
link glides through the free glide distance ( ~  L) and 
increases its length in the process. It is reasonable to 
assume that the dislocation generation rate ~g is directly 
proportional to the mobilization rate ~ ,  i.e. 

~g = /3~m (29)  

where /3 is a constant whose value would depend 
mainly on the link geometry during glide. At steady 
state the generation and the annihilation rates must be 
equal for the dislocation density to remain constant. 
Equation 29 combined with Equation 8 then gives 

~;s = ~  (30) 

where ~ (=cfl/fl) is a constant and the subscript s 
stands for steady state. By comparing Equations 
27 and 30, it is clear that at steady state, 
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@(t) = ~ = 1/fl ,  i.e. ~ will be stress and temperature 
independent. 

Equation 30 is not really new; it has been success- 
fully applied to steady state (recovery-controlled) 
creep by other authors [20, 21]. The stress as well as 
the temperature dependence of the steady state creep 
rate derives from those of the annihilation rate and the 
obstacle spacing. Using this equation, Blum came up 
with a stress exponent of about four for the creep rate 
[20]. 

2.4. S t ress  c h a n g e  t e s t s  
It is possible in the light of the present approach, to 
make a few qualitative predictions about the nature of 
creep transients which usually follow stress changes. If  
the stress on a sample creeping at steady state is 
abruptly increased from "~al to "~a2 for example, the 
threshold link size decreases instantaneously from 2~1 
to 2~2 (Fig. 3). The potentially mobile links with length 
2 such that 2,2 < 2 < 2,, (shaded area in Fig. 3) are 
mobilized instantly, thus generating an instantaneous 
plastic strain, as is often observed following a stress 
increase [22, 23]. The newly generated dislocations, 
as well as the new unstable network, are prone to 
recovery. The subsequent creep process is essentially 
the same as that which obtains following the usual 
instantaneous loading strain in an annealed material. 

Poirier [24] has demonstrated that the interpret- 
ation of creep data following a stress drop is less 
straightforward. Consider what happens, for example 
when the stress on a creeping sample is reduced from 
�9 ,, to ~a3 in which case 2a~ increases to 2~ 3 (Fig. 3). Since 
there are no potentially mobile links longer than 2a3 
(each of  the few links which happen to be gliding at the 
moment of stress interruption will almost instantly 
become arrested at the nearest obstacle), no plastic 
strain should be observed until links of length 2a, (the 
longest potentially mobile links) have grown to 2,~ 
through recovery. This prescribes, in effect, that an 
incubation period should always follow a stress reduc- 
tion. The nature of  the subsequent creep will depend 
on the behaviour of  the annihilation rate as well as the 
manner of evolution of  the distribution function at the 
lower stress (Equation 27). 

It should be noted that the creep behaviour after the 
stress drop could be complicated by several other 
factors among which are: 

~.o z 

0 

~'o I 

Xo 3 

Figure 3 Schematic illustration of the threshold link size after a 
stress increase (2a2), and after a stress reduction (2a~). 

1. the generation of  anelastic (backward) strains 
due to the unbowing of  bowed-out dislocation seg- 
ments; 

2. thermally-activated (forward) creep resulting 
from the thermally-activated release of  some links 
which are otherwise too short to glide under the new 
stress, and 

3. forward creep which might result from network 
coarsening [18, 25]. 

These may be especially significant during the period 
required for links of  length 2,, to grow to the new 
length 2a3 necessary for glide. 

2.5. Effective dislocation velocity 
In describing high temperature deformation, it has 
been common practice to characterize the strain rate 
with the familiar Tay lo r -Orowan  equation 

= etlQbV (31) 

where v is the dislocation velocity. Since the value of  
which is often used in Equation 31 is the measured 

free dislocation density, it is clear that v should be 
some kind of average effective velocity for all the free 
dislocations, including those that are arrested at a n y  
given instant. This velocity is easily found by compar- 
ing Equations 27 and 31: 

440 0a v - ~3/2 (32) 

where L has been taken to be equal to Q 1/2. At steady 
state, this velocity becomes 

v s -  ~3/2- (33) 

The implications of  Equations 32 and 33 are not 
only physically reasonable, but are in fact expected 
from a correctly formulated recovery model of creep 
deformation. Suppose, for instance, that we have two 
structures of the same dislocation density which 
happen to be recovering at different rates (this is poss- 
ible if the distributions are different; see Equation 28). 
Equation 33 stipulates that dislocations would, on 
average, move faster in the one in which recovery is 
more rapid. If, on the other hand, two structures 
recovering at the same rate have different values of 0, 
the one with the lower dislocation density would have 
a higher value of v. 

This analysis is also consistent with the observations 
of Barrett e t  al. [1] and Sikka e t  al. [26] who after 
measuring the decrease in ~ and Q during normal 
primary creep in various materials, concluded that v 
must decrease for their data to be compatible with 
Equation 31. It is now clear from Equation 32 that the 
decrease in v must be a direct consequence of a rela- 
tively large decline in the rate of recovery during this 
creep stage. 

Phenomenological expediency has often led, in the 
past, to the introduction of the concept of internal 
stress into the strain rate equation through its influ- 
ence on the effective dislocation velocity [27]. How- 
ever, it is clear from Equation 32 that v is not a "glide" 
velocity p e r  se,  since its value is determined more by 
the rate of  release of arrested dislocations than by the 
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details of the glide process itself. To be physically 
meaningful in view of the new perspective on v, the 
internal stress must be related principally to the 
process of dislocation mobilization; it is not a long 
range resistance to the glide motion of dislocations. 
This new viewpoint tends to lend support to the earlier 
attempt by this author at formulating a phenomeno- 
logical relationship between internal stress and the 
rate of recovery [28]. 

3. Concluding remarks 
The approach taken in this paper, based on the spurt- 
like motion of dislocation links in a three-dimensional 
network, has demonstrated clearly the prominent 
rrles played by two major factors during crystal 
deformation. The first, and the more familiar one, is 
the number density of obstacles, which is important to 
the extent that it determines the inter-obstacle spacing 
within which a dislocation link can glide freely. The 
second, and perhaps more important factor, which 
ironically has often been neglected in theories of crys- 
tal deformation, is the rate of release of arrested dis- 
locations. During the creep of pure metals the former 
is determined by the dislocation density and the latter 
by the rate of recovery. 

The temptation to explain transient creep behaviour 
solely on the basis of the "static" dislocation structure 
has led to the invocation of subgrain strengthening. 
This, as mentioned earlier, is not justified by the 
results of recent experimentation, nor is it even con- 
sidered necessary in the light of this model. Problems 
commonly encountered with the interpretation of 
transient creep data are easily avoided once the 
importance of the recovery rate is acknowledged. Its 
significance, which has been highlighted by the 
Bailey-Orowan model, is further underscored by our 
newly formulated equations which establish direct 
correlations between the strain rate and the annihi- 
lation rate. A paper which shows that the Bailey- 
Orowan equation in fact follows directly from these 
(new) equations is under preparation. 

The observation that the recovery rate may not be 
uniquely related to the dislocation density shows why 
a simple correlation will not always be found between 
the strength of a creeping sample and the instan- 
taneous dislocation structure observable metallo- 
graphically. The magnitude of the strain rate, accord- 
ing to Equation 27, is essentially an indication of how 
fast the dislocation structure is evolving at any instant 
during recovery-creep, as determined by the instan- 
taneous value of Oa. The shape of the creep curve (i.e. 
sign of ~)), on the other hand, should be closely related 
to the direction of evolution, i.e. whether the dislo- 
cation structure is becoming more recovery-resistant 
or recovery-prone. The normal transients (~ < 0) 
characteristic of recovery-creep must thus be due, at 
least in part, to the concomitant rapid decline in the 
rate of recovery, in conformity with experimental evi- 
dence. Further understanding of the new strain rate 
equation, and of transient creep behaviour in par- 
ticular, must await the appropriate characterization of 
the annihilation rate and the dislocation distribution. 
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